2023-24 MATH2048: Honours Linear Algebra II Homework 2 Solution

Due: 2023-09-22 (Friday) 23:59

For the following homework questions, please give reasons in your solutions. Scan your solutions and submit it via the Blackboard system before due date.

1. Let V and W be vector spaces over the field F, and let V_{1} and W_{1} be subsets of V and W respectively. Consider the direct product $V \times W$.

Prove or disprove: If V_{1} is a subspace of V and W_{1} is a subspace of W, then $V_{1} \times W_{1}$ is a subspace of $V \times W$.

Prove or disprove: If the product set $V_{1} \times W_{1}$ is a subspace of $V \times W$, then V_{1} is a subspace of V and W_{1} is a subspace of W.

Proof. (a) Assume V_{1} is a subspace of V and W_{1} is a subspace of W.
Because both V_{1} and W_{1} contain the zero vector, we have $(0,0) \in V_{1} \times W_{1}$. For any $a, b \in V_{1} \times W_{1}$ and scalar $k \in F$, we have $a=\left(v_{1}, w_{1}\right), b=\left(v_{2}, w_{2}\right)$ for some $v_{1}, v_{2} \in V_{1}$ and $w_{1}, w_{2} \in W_{1}$. Then $v_{1}+k v_{2} \in V_{1}$ and $w_{1}+k w_{2} \in W_{1}$. Then $a+k b=\left(v_{1}+k v_{2}, w_{1}+k w_{2}\right) \in V_{1} \times W_{1}$. Hence, $V_{1} \times W_{1}$ is a subspace of $V \times W$.
(b) Assume $V_{1} \times W_{1}$ is a subspace of $V \times W$. Since $(0,0) \in V_{1} \times W_{1}$, it follows that $0 \in V_{1}$ and $0 \in W_{1}$, so both V_{1} and W_{1} are nonempty.

Now, let's take any $a, b \in V_{1}$ and $c, d \in W_{1}$, and a scalar $k \in F$. Because $(a, c),(b, d) \in V_{1} \times W_{1}$ and $V_{1} \times W_{1}$ is a subspace, we know that $(a+k b, c+k d) \in$ $V_{1} \times W_{1}$.

By the definition of the Cartesian product, this implies that $a+k b \in V_{1}$ and $c+k d \in W_{1}$. This shows that V_{1} and W_{1} are closed under addition and scalar multiplication, and hence, they are subspaces of V and W, respectively.
2. Let V be a finite dimensional vector space and W be a subspace of V. Define a map $\pi: V \rightarrow V / W$ by $\pi(v)=v+W$ for all $v \in V$. Show that π is a surjective linear transformation and its kernel is W.

Proof. Let's prove that π is a surjective linear transformation and its kernel is W. Firstly, let's prove that π is a linear transformation. Let $v_{1}, v_{2} \in V$ and $k \in F$.

We have $\pi\left(v_{1}+v_{2}\right)=v_{1}+v_{2}+W=\left(v_{1}+W\right)+\left(v_{2}+W\right)=\pi\left(v_{1}\right)+\pi\left(v_{2}\right)$ and $\pi\left(k v_{1}\right)=k v_{1}+W=k\left(v_{1}+W\right)=k \pi\left(v_{1}\right)$. Thus, π is a linear transformation.

Secondly, for all $w \in V / W, w=v+W$ for some $v \in V$. Then $\pi(v)=w$, which shows surjectivity.

Finally, $\operatorname{ker}(\pi)=\{v \in V: \pi(v)=0+W\}=\{v \in V: v+W=0+W\}=W$.
3. Let $\left\{v_{i}\right\}_{i \in I}$ be a spanning set of a (maybe infinite-dimensional) vector space V. Prove that there exists a subset $S \subseteq I$ such that $\left\{v_{i}\right\}_{i \in S}$ is a basis of V. (Hint: Use Zorn's lemma to prove a maximal S exists.)

Proof. To prove that every vector space has a basis, we will use Zorn's Lemma. Zorn's Lemma states that if every chain (a totally ordered subset) in a partially ordered set has an upper bound, then the set contains at least one maximal element. First, consider the set S of all linearly independent subsets of a given vector space V over a field F. We order this set by inclusion.

Now we need to show that every chain in S has an upper bound in S. Let C be a chain in S, which is a collection of linearly independent subsets of V ordered by inclusion. Let U be the union of all the sets in C. We claim that U is a linearly independent set. Suppose there exist vectors $v_{1}, v_{2}, \ldots, v_{n} \in U$ and scalars $a_{1}, a_{2}, \ldots, a_{n} \in F$, with $a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}=0$.

However, each v_{i} is in some set in the chain C, and since C is totally ordered by inclusion, there is one set in C that contains all of the vectors $v_{1}, v_{2}, \ldots, v_{n}$. But this set is in S and is therefore linearly independent. Then each a_{i} is zero.

Therefore, U is a linearly independent set and is in S. So, every chain in S has an upper bound in S.

By Zorn's Lemma, S contains at least one maximal element. Call it B. This is a linearly independent set that is not properly contained within any other linearly independent set in V.

Now we need to show that B spans V. Assume for contradiction that it does not. Then there exists a vector $v \in V$ that is not in the span of B. We can add v to B to form a larger linearly independent set, contradicting the maximality of B. Therefore, the assumption that B does not span V must be false.

Hence, B is a basis for V.
4. (2.1 Q20) Let V and W be vector spaces with subspaces V_{1} and W_{1}, respectively. If $T: V \rightarrow W$ is linear, prove that $T\left(V_{1}\right)$ is a subspace of W and that $\{x \in V: T(x) \in$ $\left.W_{1}\right\}$ is a subspace of V.

Proof. First, let's prove that $T\left(V_{1}\right)$ is a subspace of W.
(a) $T(0)=0 \in T\left(V_{1}\right)$.
(b) Let $w_{1}=T\left(v_{1}\right)$ and $w_{2}=T\left(v_{2}\right)$ be any two vectors in $T\left(V_{1}\right)$, for some $v_{1}, v_{2} \in$ V_{1}. Then, $w_{1}+w_{2}=T\left(v_{1}\right)+T\left(v_{2}\right)=T\left(v_{1}+v_{2}\right)$, which is in $T\left(V_{1}\right)$ since $v_{1}+v_{2} \in V_{1}$.
(c) Let $w=T(v)$ be any vector in $T\left(V_{1}\right)$, for some $v \in V_{1}$, and let k be any scalar. Then, $k w=k T(v)=T(k v)$, which is in $T\left(V_{1}\right)$ since $k v \in V_{1}$.

Thus, $T\left(V_{1}\right)$ is a subspace of W.
Second, let's prove that $S=\left\{x \in V: T(x) \in W_{1}\right\}$ is a subspace of V.
(a) Because $T(0)=0 \in W_{1}, 0 \in S$.
(b) Let $x_{1}, x_{2} \in S$. Then, $T\left(x_{1}+x_{2}\right)=T\left(x_{1}\right)+T\left(x_{2}\right) \in W_{1}$ because W_{1} is a subspace of W. Therefore, $x_{1}+x_{2} \in S$.
(c) Let $x \in S$ and k be any scalar. Then, $T(k x)=k T(x) \in W_{1}$ because W_{1} is a subspace of W. Therefore, $k x \in S$.

Thus, S is a subspace of V.
5. (2.1 Q13) Let V and W be vector spaces, let $T: V \rightarrow W$ be linear, and let $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be a linearly independent subset of $R(T)$. Prove that if $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is chosen so that $T\left(v_{i}\right)=w_{i}$ for $i=1,2, \ldots, k$, then S is linearly independent.

Proof. Suppose there exist scalars $a_{1}, a_{2}, \ldots, a_{k}$, such that $a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{k} v_{k}=0$. Then $T\left(a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{k} v_{k}\right)=a_{1} w_{1}+a_{2} w_{2}+\ldots+a_{k} w_{k}=0$. By the linear
independence of $w_{1}, w_{2}, \ldots, w_{k}$, each $a_{i}=0$. Hence, S must be linearly independent.

